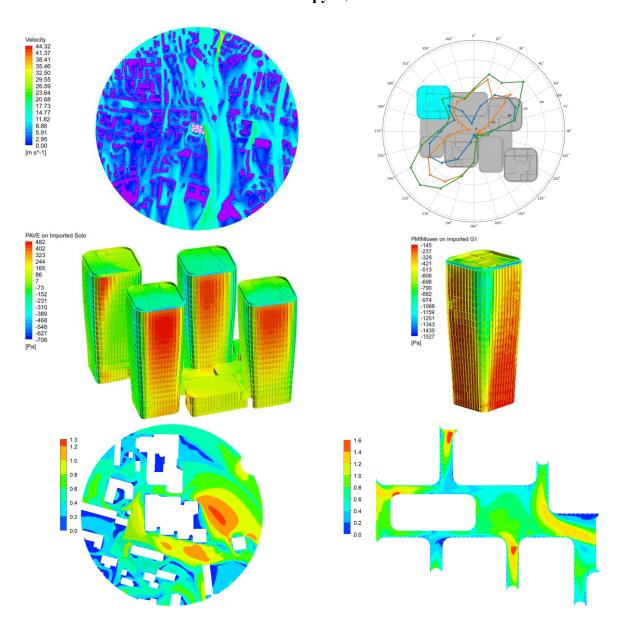


Федеральное государственное бюджетное образовательное учреждение высшего образования


Национальный исследовательский Московский государственный строительный университет

129337, Россия, Москва, Ярославское ш., д. 26, тел. (495) 781-80-07, факс (499) 183-44-38

Научно-техническое сопровождение проектирования

Объект: «**Многофункциональный комплекс**», расположенный по адресу: г. Москва, Дружинниковская улица, владение 15.

Разработка модели ветровых воздействий на несущую систему и ограждающие конструкции

1. Исходные данные. Постановка задач

Постановка задач расчетных исследований

В соответствии с техническим заданием ставятся и решаются следующие задачи:

- 1) анализ и обобщение проектной документации Объекта, постановка задач расчетных исследований;
- 2) разработка и верификация трехмерных аэродинамических расчетных моделей Объекта с учетом и без учета окружающей застройки и различных направлений ветра;
- 3) определение средней и пульсационной составляющих ветровой нагрузки на несущие конструкции Объекта;
- 4) определение распределения пикового (минимального и максимального) ветрового давления на ограждающие (фасадные) конструкции Объекта;
- 5) оценка ветровой комфортности предполагаемых пешеходных зон на основе критериев МДС 20-1.2006 и коэффициентов усиления скоростей ветра при заданной розе ветров.

Площадка строительства, рельеф и застройка объекта

Земельный участок под строительство Объекта расположен по адресу: г. Москва, внутригородское муниципальное образование Пресненское, ул. Дружинниковская, вл. 15, на участке площадью 9244 м².

Участок ограничен с юга — улицей Заморёнова, с востока — Дружинниковской улицей, с запада — внутриквартальным проездом, с севера — территорией 4-9-этажного административного здания.

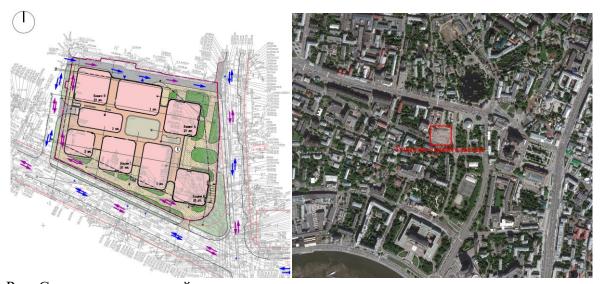


Рис. Схема планировочной организации земельного участка и карта местности вокруг участка строительства

Проектируемый Объект окружает плотная городская застройка. В зоне аэродинамического влияния находится одна из семи «сталинских высоток» — Жилой дом на Кудринской площади и Дом Правительства. Аэродинамические расчеты проводились для двух вариантов: без окружающей застройки и с окружающей застройкой в радиусе 800 м от Объекта.

Согласно СП 20.13330.2016 площадка строительства находится в I ветровом районе (нормативное значение ветрового давления $w_0 = 0.23 \ \kappa \Pi a$).

Преобладают южный, юго-восточный и западные ветра. Согласно СП 20.13330.2016 при определении ветровых нагрузок принят тип местности – C.

Краткая характеристика исследуемого Объекта

Многофункциональный комплекс представляет собой 20-этажное здание, состоящее из трехэтажной стилобатной части и четырех Башен. Кроме того, проектом предусмотрено устройство трёх подземных этажей с расположенными в них автостоянками.

Общее количество этажей Объекта проектирования — 23 шт. Из них 20 этажей надземных, 3 этажа подземных. Верхняя отметка здания составляет 75м. Верхняя допустимая отметка здания по $\Gamma\Pi$ 3У — 75 м.

Высота первого этажа составляет 5 м от отметки "чистого" пола до низа плиты перекрытия. Высота второго этажа 4,7 м. Высота третьего этажа 2,97 м. Высота типового этажа 3,08 м от отметки "чистого" пола до низа плиты перекрытия. Верхний этаж занимают пентхаусы высотой 3,97 м от отметки "чистого" пола до низа плиты перекрытия.

Кровля стилобатной части комплекса эксплуатируемая, с террасами и участками озеленения.

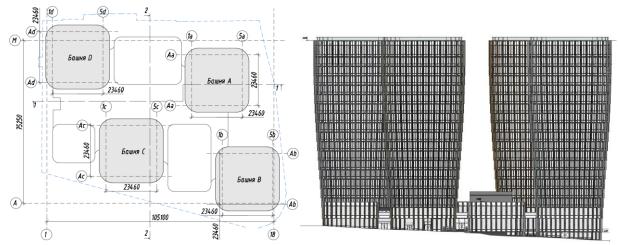


Рис. Схема Башен Объекта и вид на Фасад 1-18

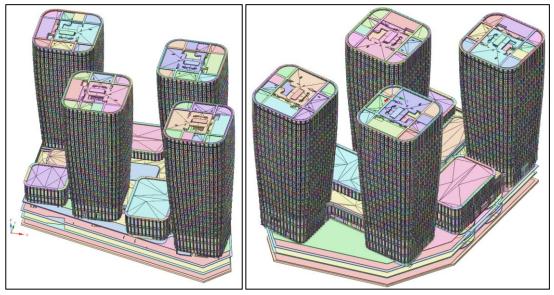


Рис. Трехмерная геометрическая модель, по данным заказчика

2. Разработка и верификация расчётных моделей

Для моделирования ветровых нагрузок и оценки параметров ветровой комфортности пешеходных зон были созданы три расчетные модели:

- \bullet модель 1 для определения ветровых нагрузок без учета окружающей застройки;
- модель 2 для определения ветровых нагрузок с учетом окружающей застройки;
- *модель 3* для оценки параметров ветровой комфортности пешеходных зон с учетом окружающей застройки с параметрами сетки, оптимизированными под особенность задачи.

Геометрические модели

Практическая подготовка расчетных моделей начинается с создания геометрических объемных моделей Объекта и рельефа окружающей местности. Рельеф упрощенно учитывался только непосредственно вокруг Объекта с целью моделирования переменного уровня земли вокруг стилобата. Геометрия Многофункционального комплекса выполнена согласно исходным данным — чертежам АР, ситуационному плану и 3D-модели, выданным Заказчиком. Окружающую застройка учитывалась упрощенно на основе спутниковых данных, свободно предоставляемым источником *earth.google.com*. Объемные геометрические модели создавались в модуле ANSYS SpaceClaim

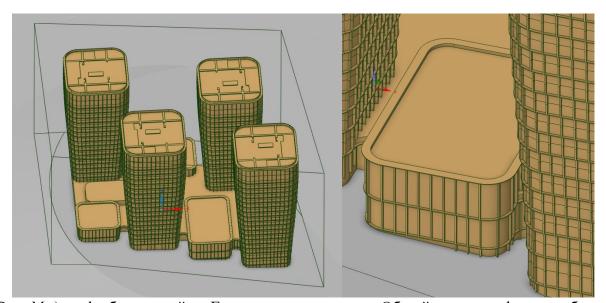


Рис. Модель 1 – без застройки. Геометрическая модель. Общий вид и вид фасадов вблизи

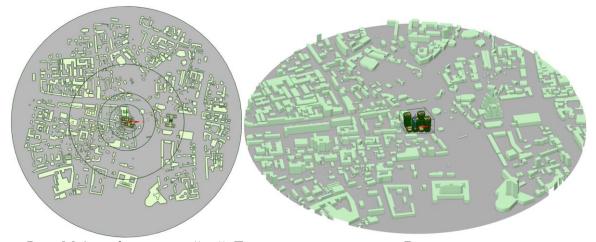


Рис. Модель 3 – с застройкой. Геометрическая модель. Вид сверху и изометрия

Конечнообъемные сетки

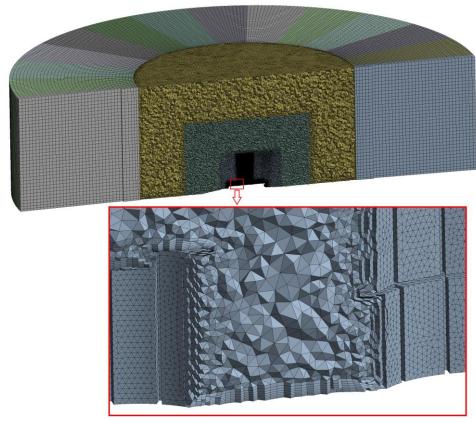


Рис. Модель 1. Сечение конечнообъемной сетки

Граничные условия

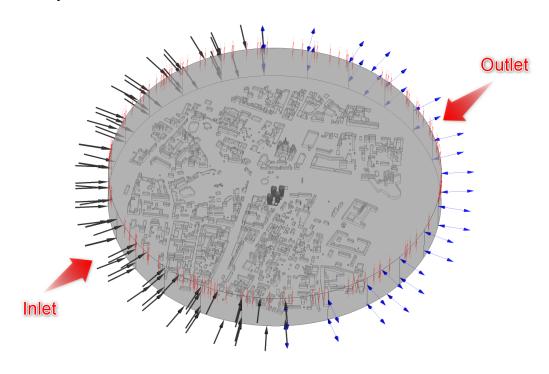


Рис. Расчетная область *Модели 3* (ANSYS CFX) с обозначенными граничными условиями. Угол атаки 345°

3. Определение ветровых нагрузок

Форма представления и номенклатура результатов

В данном разделе приведены основные результаты выполненных расчетных исследований по определению ветровых нагрузок на несущие и ограждающие конструкции Многофункционального комплекса (г. Москва, внутригородское муниципальное образование Пресненское, ул. Дружинниковская, вл. 15). Многовариантные расчетные исследования проводились с учетом и без учета окружающей застройки, а также с учетом локального рельефа местности в непосредственной близости вокруг объекта.

Начало координат находится приблизительно в геометрическом центре Объекта на отметке 0 м. Ось X ориентирована c 3 на B со сдвигом на 10° по часовой стрелке, ось Y-c Ю на C со сдвигом на 10° по часовой стрелке, ось Z- вверх. Угол атаки ветра (Угол, $^{\circ}$) отсчитывается от Севера по часовой стрелке.

Поэтажные ветровые нагрузки на перекрытия вычисляются интегрированием по внешним поверхностям каждой башни от середины одного этажа до середины вышележащего этажа.

Положительному значению ветровых нагрузок соответствует направление сонаправленное соответствующей координатной оси, а отрицательному – противоположно направленное соответствующей оси.

Все приведенные в главе значения ветровых нагрузок являются *расчетными* (с учетом коэффициента надежности по нагрузке $\gamma_f = 1.4$).

Ветровые нагрузки на несущие конструкции:

- средние *суммарные* (на всю Башню) ветровые нагрузки на несущие конструкции каждой Башни в упомянутых выше осях (F_X , F_Y , тс) и векторная сумма нагрузки (F_R , тс) для 24-х направлений (шаг по углу 15°) с учетом и без учета окружающей застройки представлены в табличном виде и в форме графиков;
- средние *поэтажные* ветровые нагрузки на несущие конструкции каждой Башни (Φ_X , Φ_Y , тс) для наиболее опасных направлений ветра с учетом и без учета окружающей застройки представлены в табличном виде;
- пульсационные *поэтажные* ветровые нагрузки на несущие конструкции каждой Башни ($\Phi_{puls,X}$, $\Phi_{puls,Y}$, тс) для наиболее опасных направлений ветра с учетом и без учета окружающей застройки представлены в табличном виде;
- суммарные (сумма средней и пульсационной составляющих) *поэтажные* ветровые нагрузки на несущие конструкции каждой Башни ($\Phi_{sum,X}$, $\Phi_{sum,Y}$, тс) для наиболее опасных направлений ветра с учетом и без учета окружающей застройки представлены в табличном виде.

Ветровые нагрузки на ограждающие конструкции:

- огибающие максимального и минимального значений давления на ограждающие (фасадные) конструкции Объекта для всех направлений ветра;
- огибающие вычисленных поэтажно максимальных и минимальных значений ветрового давления на ограждающие (фасадные) конструкции соответствующих зданий;

– изополя верхней огибающей максимальных значений ветрового давления, нижней огибающей минимальных значений ветрового давления и соответствующих углов атаки ветра, при которых реализуются эти огибающие, были представлены в графическом виде.

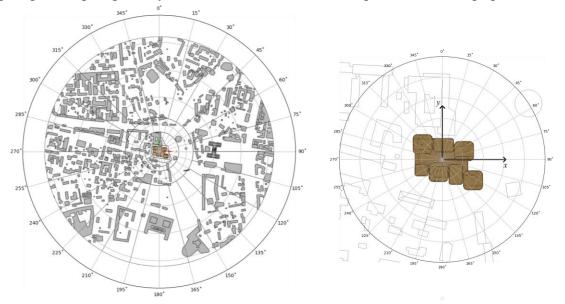
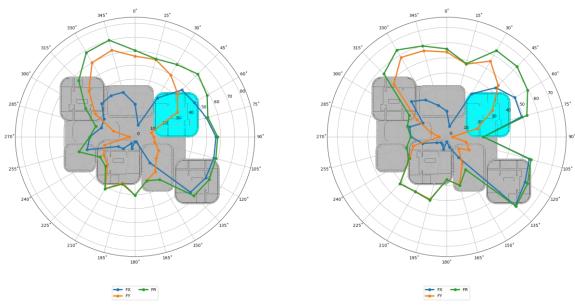


Рис. Система координат и расчетные направления ветрового потока.

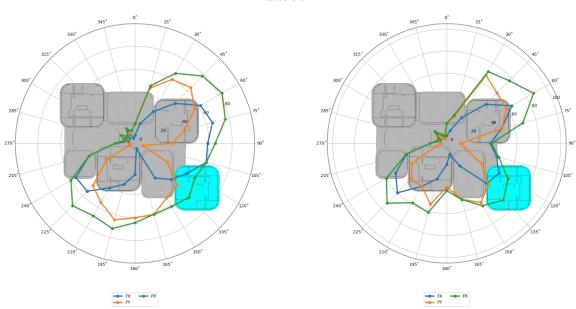
Ветровые нагрузки на несущие конструкции


На рис. и в таблицах представлены средние *суммарные* (на всю Башню) ветровые нагрузки на несущие конструкции каждой Башни в упомянутых выше осях (F_X , F_Y , тс) и векторная сумма нагрузки (F_R , тс) для 24-х направлений (шаг по углу $15^{\rm o}$) с учетом и без учета окружающей застройки.

В табл. представлены средние *поэтажные* ветровые нагрузка на несущие конструкции каждой Башни (Φ_X , Φ_Y , тс) для наиболее опасных направлений ветра с учетом и без учета окружающей застройки.

В табл. представлены пульсационные *поэтажные* ветровые нагрузки на несущие конструкции каждой Башни ($\Phi_{puls,X}$, $\Phi_{puls,Y}$, тс) для наиболее опасных направлений ветра с учетом и без учета окружающей застройки.

В табл. представлены суммарные (сумма средней и пульсационной составляющих) поэтажные ветровые нагрузки на несущие конструкции каждой Башни ($\Phi_{sum,X}$, $\Phi_{sum,Y}$, тс) для наиболее опасных направлений ветра с учетом и без учета окружающей застройки.



) без учета застройки

б) с учетом застройки

Рис. Суммарные расчетные ветровые нагрузки (F_X, F_Y) и векторная сумма нагрузки (F_R) в зависимости от направления ветра на несущие конструкции *Башни А*, тс (значения приведены по модулю)

Башня В

а) без учета застройки

б) с учетом застройки

Рис. Суммарные расчетные ветровые нагрузки (F_X, F_Y) и векторная сумма нагрузки (F_R) в зависимости от направления ветра на несущие конструкции *Башни В*, тс (значения приведены по модулю)

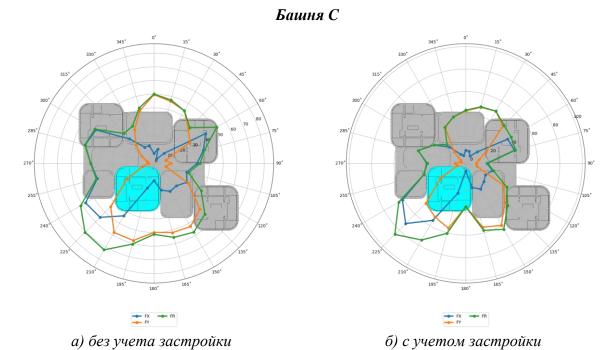


Рис. Суммарные расчетные ветровые нагрузки (F_X, F_Y) и векторная сумма нагрузки (F_R) в зависимости от направления ветра на несущие конструкции *Башни С*, тс (значения приведены по модулю)

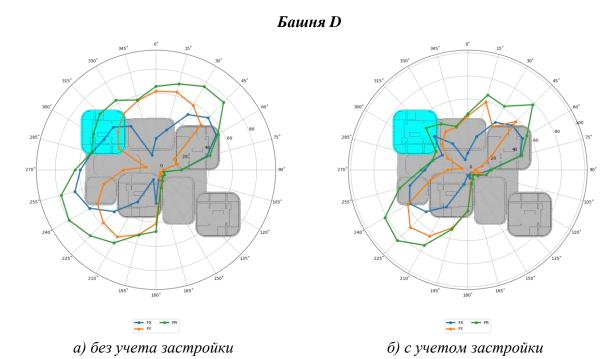


Рис. Суммарные расчетные ветровые нагрузки (F_X, F_Y) и векторная сумма нагрузки (F_R) в зависимости от направления ветра на несущие конструкции *Башни D*, тс (значения приведены по модулю)

Пиковые ветровые давления на ограждающие конструкции

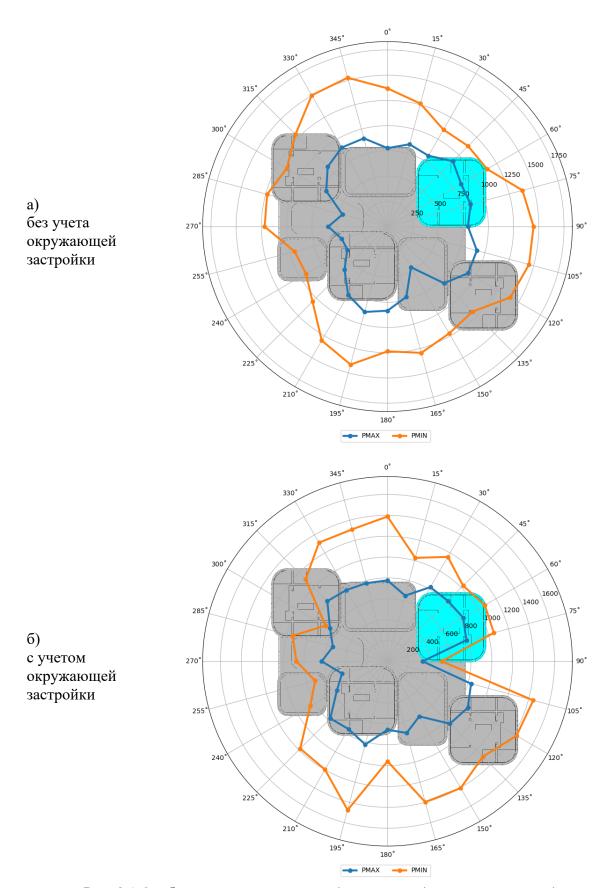
На рис. и в табл. показаны огибающие максимального и минимального значений ветрового давления на ограждающие (фасадные) конструкции для Башни А с учетом и без учета окружающей застройки в зависимости от направления ветра. При каждом направлении ветра выбирается максимальное и минимальное значение ветрового давления среди его значений в узлах расчетной сетки по всей поверхности Башни.

В таблицах цветом выделены пиковые (минимальные и максимальные) значения:

- оранжевым цветом наибольшая положительная ветровая нагрузка на ограждающие конструкции;
- голубым цветом наибольшая отрицательная ветровая нагрузка на ограждающие конструкции.

Таблица Огибающие минимального и максимального значений ветрового давления на ограждающие (фасадные) конструкции *Башни А*

Угол, °	Башня А							
	Без учета окружа	ающей застройки	С учетом окружающей застройки					
	Максимальное значение ветрового давления P_{max} , Па	Минимальное значение ветрового давления P_{min} , Па	Максимальное значение ветрового давления P_{max} , Па	Минимальное значение ветрового давления P_{min} , Па				
0	777	-1369	776	-1388				
15	844	-1261	652	-1027				
30	811	-1109	821	-1156				
45	916	-1129	819	-1025				
60	844	-1140	837	-1077				
75	852	-1386	782	-1055				
90	798	-1448	337	-520				
105	917	-1453	829	-1446				
120	923	-1405	889	-1427				
135	794	-1192	846	-1292				
150	466	-1223	609	-1403				
165	721	-1295	711	-1397				
180	834	-1236	656	-958				
195	876	-1416	825	-1476				
210	781	-1304	749	-1199				
225	602	-1051	775	-1183				
240	460	-933	560	-854				
255	470	-954	451	-718				
270	588	-1218	631	-872				
285	462	-1235	542	-943				
300	701	-1153	637	-686				
315	838	-1290	815	-1110				
330	905	-1502	789	-1313				
345	905	-1527	776	-1310				



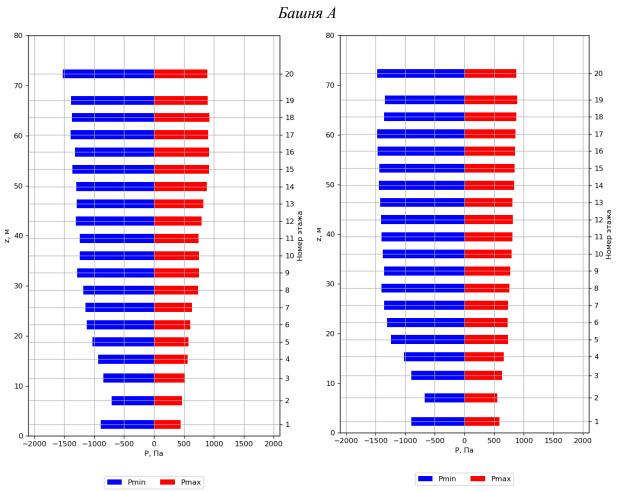
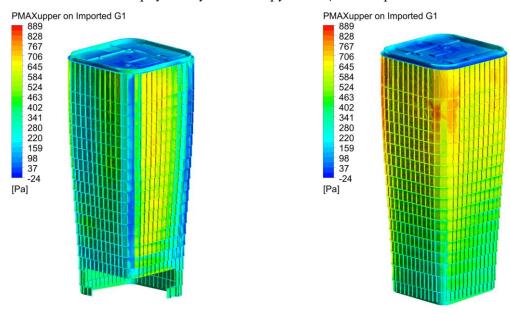

Рис. 3.1 Огибающие максимального (синяя линия) и минимального (оранжевая линия) пиковых значений давления на ограждающие (фасадные) конструкции *Башни А* в зависимости от направления ветра, Π а (значения приведены по модулю).

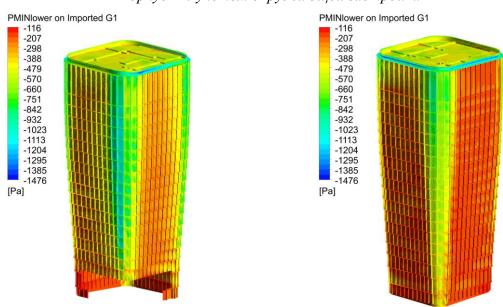
Таблица Поэтажные огибающие минимального и максимального ветрового давления на ограждающие (фасадные) конструкции Башни А

Этаж	Башня A									
	Без учета застройки				С учетом застройки					
	<i>Р_{тах},</i> Па	ANG(P _{max}), °	$P_{min}, \Pi a$	$ANG(P_{min}), ^{o}$	P_{max} , Па	ANG(P _{max}), °	P_{min} , Па	ANG(P _{min}), °		
1	443	75	-887	345	594	0	-895	0		
2	465	60	-706	90	553	135	-673	0		
3	519	105	-848	0	635	225	-900	150		
4	562	105	-934	285	662	225	-1020	150		
5	573	120	-1031	285	737	225	-1236	150		
6	607	105	-1126	165	726	225	-1302	150		
7	634	120	-1148	285	736	225	-1356	150		
8	738	120	-1184	210	758	120	-1403	150		
9	751	60	-1284	210	775	120	-1358	150		
10	749	60	-1237	210	795	120	-1378	150		
11	745	60	-1243	210	811	120	-1398	195		
12	797	45	-1304	210	818	120	-1405	195		
13	827	105	-1289	90	812	120	-1424	195		
14	883	105	-1300	90	836	120	-1442	195		
15	917	105	-1361	90	847	120	-1435	195		
16	916	45	-1320	90	857	120	-1467	195		
17	905	345	-1389	90	862	120	-1472	195		
18	923	120	-1371	90	874	120	-1354	195		
19	898	345	-1387	90	889	120	-1343	195		
20	892	345	-1527	345	878	120	-1476	195		


 $ANG(P_{max})$, $ANG(P_{min})$ — углы атаки ветра, при котором реализуется максимальная (минимальная) огибающая ветрового давления.

12

а) без учета окружающей застройки б) с учетом окружающей застройки Рис. Поэтажные огибающие минимального (P_{min}) и максимального (P_{max}) значений давления (Π a) на ограждающие (фасадные) конструкции Башни A с учетом всех направлений ветра


Корпус А с учетом окружающей застройки

а) вид «изнутри» МФК б) вид «снаружи» МФК Рис. Верхняя огибающая максимальных значений ветрового давления (Па) на ограждающие (фасадные) конструкции.

Максимальное значение 889 Па, минимальное -24 Па

Корпус А с учетом окружающей застройки

а) вид «изнутри» МФК
Рис. Нижняя огибающая минимальных значений ветрового давления (Па) на ограждающие (фасадные) конструкции.
Максимальное значение -116 Па, минимальное -1476 Па

4. Результаты оценки ветровой комфортности пешеходных зон

Форма представления и номенклатура результатов

Уровни пешеходной комфортности (повторяемость максимальной скорости ветра, ч/год) по 3-м нормативно регламентированным критериям (K_{crl} , K_{cr2} , K_{cr3}) вычислялись согласно методике. Результаты расчетов приведены для коэффициентов обеспеченности $\theta = 1$ (базовая оценка) и $\theta = 2$ (дополнительная, более строгая оценка для выявления относительно «худших» зон пешеходной комфортности). Параметры пешеходной комфортности определялись с учетом 24-х направлений ветра (через 15°).

На рис. показаны критерии пешеходной комфортности (K_{cr1} , K_{cr2} , K_{cr3}) для коэффициента обеспеченности $\theta = 1$, на рис. соответственно для $\theta = 2$.

На рис. приведены огибающие максимальных скоростей V_{max} ($V_{max} = V_m \cdot (1 + \theta \cdot I)$, где V_m – средняя расчетная скорость ветра в пешеходной зоне на высоте 1.5 м, I – интенсивность турбулентности) для коэффициентов обеспеченности $\theta = 1$ и $\theta = 2$ соответственно.

Для характерных направлений ветра 0° , 45° , 90° , 135° , 180° , 225° , 270° , 315° представлены расчетные поля коэффициентов усиления скоростей ветра (относительные средние скорости, $V_r = V_m / V_{1.5}$, где V_{max} — максимальная скорость ветра в пешеходной зоне на высоте 1.5 м, $V_{1.5} = 16.05$ м/с — средняя скорость ветра на входе на высоте 1.5 м согласно [2]) — на рис. для коэффициента обеспеченности $\theta = 1$ и на рис. для коэффициента обеспеченности $\theta = 2$.

Результаты расчетной оценки

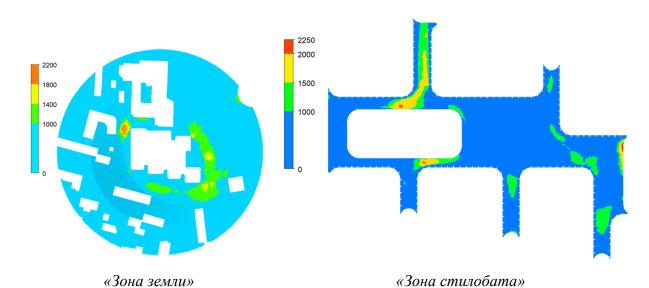


Рис.I-й уровень пешеходной комфортности — превышение V_{crl} =6 м/с не чаще K_{crl} =1000 часов в год в пешеходной зоне Ko3 ϕ ϕ μ μ μ μ μ 0 θ 0.

5. Выводы и рекомендации

По результатам выполненной НИР по научно-техническому сопровождению (НТС) проектирования Объекта «Многофункциональный комплекс», расположенного по адресу: г. Москва, Дружинниковская улица, владение 15, можно сформулировать следующие выводы и рекомендации:

- 1. На основе анализа и обобщения исходных данных разработаны и верифицированы расчетные трехмерные численные модели ветровой аэродинамики Объекта с учетом и без учета окружающей застройки.
- 2. С использованием современных численных методов гидрогазодинамики, реализованных в программном комплексе ANSYS CFD (CFX), и разработанной методики определения пиковых значений и динамической составляющей давления на основе трехмерной стационарной постановки проведены многовариантные расчетные исследования ветровой аэродинамики Объекта при 24-х направлениях ветра с шагом 15° с учетом и без учета окружающей застройки.
 - 3. По результатам расчетов ветровых нагрузок на несущие конструкции выявлены максимальные значения векторных сумм нагрузок на несущие конструкции Башен.
- 4. Определены наиболее опасные направления ветра, рекомендуемы к учету в прочностных расчетах.
- 5. По результатам расчет пиковых ветровых нагрузок на ограждающие (фасадные) конструкции выявлены пиковые минимальные и максимальные ветровые нагрузки на ограждающие (фасадные) конструкции Башен и Стилобатной части.
- 6. По результатам оценки параметров ветровой комфортности пешеходных зон выявлено:

—Превышение допустимого уровня пешеходной комфортности по первому критерию наблюдаются в небольшой зоне вблизи угловой части здания на северо-западе; для «зоны стилобата» - в небольших наиболее узких пешеходных зонах;

—Допустимый уровень пешеходной комфортности по второму критерию (превышение $V_{cr2} = 12$ м/c не дольше $K_{cr2} = 50$ часов в год) и допустимый уровень пешеходной комфортности по третьему критерию (превышение $V_{cr3} = 20$ м/c не дольше $K_{cr3} = 5$ часов в год) для «зоны земли» и для «зоны стилобата» выполняется везде.

Можно заключить, что, в целом, комфортность в предполагаемых пешеходных зонах достигается (для второго и третьего критериев полностью; по первому критерию есть небольшие зоны незначительного превышения).

7. В прочностных расчетах несущих и ограждающих (фасадных) конструкций рекомендуется использовать значения ветровых нагрузок, приведенные в главе 5 и Приложении А Отчета НИР.