

«Семейство» программных комплексов *АСТРА-НОВА 2017* ™ (релиз 201611)

Верификационный отчет по новым возможностям Том 1. Прочностной расчет трубопроводных систем

Москва, 2016 г.

Содержание

Введение
N1. Учет трения в опорах и температурных деформаций в режиме испытаний4
N2. Учет различных изгибных и сдвиговых жесткостей в двух плоскостях линзовых \сильфонных компенсаторов
N3. Расширение возможностей фрагментации расчётной модели
N4. Реализация возможности задания различных физико-механических и нагрузочных параметров для деталей на участке
N5. Реализация тройника как отдельной детали с возможностью задания параметров на тройник, без участия примыкающих участков44
N6. Реализация положений и формул по оценке прочности новых нормативных документов ГОСТ Р 55989-2014, ГОСТ Р 55990-201450
N7. Добавление новой таблицы исходных данных59
N8. Корректировка функции импорта модели из ПК СТАРТ64

Введение

В версии ACTPA-HOBA'2017 релиз 201611 были реализованы и верифицированы следующие новые возможности:

1. учет трения и температурных деформаций в режиме испытаний;

2. учет различных изгибных и сдвиговых жесткостей в двух ортогональных плоскостях линзовых \сильфонных компенсаторов;

3. расширение возможностей фрагментации расчётной модели (прежде всего, для выдачи результатов расчетов);

4. реализация возможности задания деталей участка с физико-механическими и нагрузочными (давление, температура) характеристиками, отличными от участковых;

5. реализация тройника как отдельной детали (без использования данных с примыкающих труб0;

6. реализация положений и формул по оценке прочности нормативных документов ГОСТ Р 55989-2014, ГОСТ Р 55990-2014 (АСТРА-МАГИСТР);

7. новая форма представления таблицы исходных данных;

8. корректировка функции импорта модели из ПК СТАРТ;

9. трехмерный КЭ-расчет деталей с учетом упругопластического деформирования (АСТРА-СТАДИО);

10. расчет деталей трубопроводов с учетом автофретирования (АСТРА-СТАДИО);

11. расчет на определение предельной пластической нагрузки по двум критериям статической прочности (АСТРА-СТАДИО).

В данном документе приведены примеры использования новых функций и, где это возможно, рассмотрены тестовые верификационные задачи, подтверждающие корректность работы программы.

В томе 1 рассматриваются вопросы, связанные с моделированием и расчетами трубопроводных систем (пп. 1-8). Том 2 посвящен уточненным трехмерным конечноэлементным расчетам НДС деталей трубопроводов с учетом физической нелинейности (упругопластического поведения материала) и практическим приложениям упругопластических расчетов: расчет деталей с учетом автофретирования и определение предельных пластических нагрузок по двум реализованным критериям статической прочности (пп.9-11).

N1. Учет трения в опорах и температурных деформаций в режиме испытаний

В версии 201611 для режима испытаний реализованы следующие новые возможности (включаются в параметрах расчета на статическую и циклическую прочность):

- учет трения в опорах;
- учет температурных деформаций (деформации за счет разности температуры испытаний и холодной температуры).

Проверка корректной работы этих возможностей осуществляется путем сравнения результатов расчета в режиме испытаний с результатами для рабочего режима при идентичных заданных нагрузках.

N1.1. Проверка на элементарных моделях

Рассматривалось несколько элементарных моделей, содержащих только односторонние опоры с трением и жесткие заделки.

По модели 1 тестируется учет трения в опорах при испытаниях. Расчет проводится с учетом осевых сил от давления. По модели 2 проверяется учет отрыва от односторонних опор в режиме испытаний. По модели 3 проверяется учет температурных деформаций при испытаниях.

N1.1.1. Учет трения в опорах

Рассматривается модель, показанная на рис. N1.1.1, N1.1.2.

Рис. N1.1.1. Модель 1

Рис. N1.1.2. Нагрузки модели 1

Рис. N1.1.3. Перемещения модели 1, мм. Учет осевых сил от давления

Рис. N1.1.4. Нагрузки на опоры модели 1, м. Учет осевых сил от давления

Рис. N1.1.5. Перемещения модели 1 при заданной температуре испытаний 150 град., мм

Заключение

Результаты (перемещения, нагрузки на опоры) для рабочего режима и режима испытаний с учетом трения совпадают, что говорит о корректном учете трения при испытаниях.

N1.1.2. Учет отрыва от опор в режиме испытаний

Рассматривается консольный участок, содержащий одностороннюю опору. К свободному концу участка приложена вертикальная сосредоточенная сила, направленная вверх. По результатам расчета для режима испытаний, как и в рабочем режиме наблюдается отрыв от опоры. Таким образом, отрыв трубопровода от опор при испытаниях учитывается правильно.

Наружный диаметр труб, мм	325
Толщина стенки, мм	12
Радиус отводов, мм	487.5
Погонный вес материала, кН/м	0.914292
Коэффициент перегрузки по материалу	1.1
Модуль упругости в рабочем состоянии, МПа	2.05e5
Модуль упругости в холодном состоянии, МПа	2.05e5
Рабочее давление, МПа	10
Холодная температура, град.	20
Рабочая температура, град.	20
Давление испытаний, МПа	0
Температура испытаний, град.	0
Разность между удельными весами сред при испытаниях, кН/м ³	0

Табл. N1.1.1. Параметры расчетной схемы

Рис. N1.1.8. Перемещения, мм

N1.1.3. Учет температурных деформаций при испытаниях

Рассматривалась схема, состоящая из одного участка, лежащего на односторонних опорах. Нагрузки в рабочем режиме и при испытаниях одинаковы. Сравнивались перемещения в этих режимах.

Наружный диаметр труб, мм	325
Толщина стенки, мм	12
Радиус отводов, мм	487.5
Погонный вес материала, кН/м	3
Модуль упругости в рабочем состоянии, МПа	2e5
Модуль упругости в холодном состоянии, МПа	2e5
Рабочее давление, МПа	10
Холодная температура, град.	20
Рабочая температура, град.	200
Давление испытаний, МПа	10
Температура испытаний, град.	200
Разность между удельными весами сред при испытаниях, кН/м3	0

Табл. N1.1.2. Параметры расчетной схемы:

Табл. N1.1.3. Сопоставление перемещений по оси X в сечениях (мм)

	номер сечения					
		2	4	7	9	12
без трения	этап 2	4.50	9.00	12.28	12.17	6.75
	режим испытаний	4.50	9.00	12.28	12.17	6.75
учет трения по методике Гипрокаучук	этап 2	4.50	8.99	12.12	12.02	6.74
	режим испытаний	4.50	8.99	12.12	12.02	6.74
учет трения по методике НПО ЦКТИ	этап 2	4.50	8.99	12.12	12.02	6.74
	режим испытаний	4.50	8.99	12.12	12.02	6.74

Рис. N1.1.10. Перемещения, м. Расчет без учета трения

Рис. N1.1.11. Приведенные напряжения от веса и давления, МПа. Расчет без учета трения

АСТРА-АЭС'2017 (201606) - ТЕСТОВАЯ ВЕРСИЯ.

Рис. N1.1.12. Перемещения, м. Расчет с трением по методике Гипрокаучук

Заключение

Результаты по этапу 2 и режиму испытаний при учете температурных деформаций полностью совпадают.

N1.2. Тест на большой схеме

Была рассмотрена расчетная схема TEST3 из стандартного набора примеров (EXAMPLES), который включен в поставку ACTPA-HOBA. Все пружины в схеме для целей тестирования заменены на жесткие подвески (пружинные подвески в рабочем режиме и при испытаниях учитываются по-разному, см. Общее описание). Заданы одинаковые нагрузочные параметры для рабочего режима и испытаний.

Сравниваются результаты (перемещения и усилия) для этапа 2 и режима испытаний.

Рис. N1.2.1. Расчетная схема

Модуль упругости в рабочем состоянии, МПа	2e5
Модуль упругости в холодном состоянии, МПа	2e5
Рабочее давление, МПа	10
Холодная температура, град.	20
Рабочая температура, град.	20
Давление испытаний, МПа	10
Температура испытаний, град.	20
Разность между удельными весами сред при испытаниях, кН/м3	0

Табл. N1.2.1. Параметры расчетной схемы:

Заключение

Результаты по перемещениям и усилиям в сечениях для рабочего режима (этап 2) и режима испытаний практически идентичны.

N2. Учет различных изгибных и сдвиговых жесткостей в двух плоскостях линзовых\сильфонных компенсаторов

Была добавлена возможность задания различных в ортогональных плоскостях жесткостей компенсаторов на изгиб (вокруг локальных осей X', Y') и сдвиг (вдоль осей X', Y') (рис. N2.2).

Для проверки корректности работы новой функции рассмотрена элементарная модель: консольный участок, состоящий из компенсатора длиной 1000 мм и отрезков прямых труб длиной 1 мм по краям (рис. N2.1, табл. N2.1).

Таблица N2.1. Принятые параметры расчетной схемы

Наружный диаметр, мм	219
Толщина стенки, мм	12
Модуль упругости, МПа	2e5
Плотность материала	0

На консольном конце задавались различные сосредоточенные нагрузки. Анализировались перемещения этого узла (табл. N2.2). Основные выполненные проверки и результаты:

- При сопоставлении компенсатора и прямой трубы с одинаковыми жесткостями на изгиб, кручение, растяжение и сдвиг (варианты 1-4 в табл. N2.2) полученные перемещения практически идентичны.
- Рассматривался компенсатор под действием изгибающих моментов вокруг осей Y и Z (ось X – продольная ось трубы) (варианты 5-7 в табл. N2.2). Изменение одной из изгибных жесткостей в 2 раза приводит к изменению соответствующего перемещения в 2 раза.
- Рассматривались варианты поворота локальных осей на 45 град. и 30 град. В первом случае деформированная схема симметрична, поскольку нагрузка задана в глобальной системе координат, изменение одной из жесткостей на изгиб в 2 раза приводит к пропорциональному изменению перемещений в 1.5 раза. При угле в 30 град. деформированная схема несимметрична.
- Рассмотрено влияние сдвиговых жесткостей на деформацию консоли под действием поперечных сил FY, FZ. При изменении жесткостей по осям Y и Z перемещения меняются соответствующим образом.

Заключение

Учет различных по осям жесткостей компенсаторов реализован корректно.

	Компенсатор								
Компенсат	op		Общего вида						
Н Жёсткости	компенсатора								
На изгиб	вокруг Х'		8387.631	кН*м/рад					
На изгиб	вокруг Ү'		8387.631	кН*м/рад					
На кручен	ие		6452.024	кН*м/рад					
На растяж	ение		1560743	ĸH/M					
На сдвиг	по Х'		600285.9	ĸH/M					
На сдвиг	по Ү'		600285.9	ĸH/M					
Угол пово	рота локальных	осей	0	град					
Эффективн	ая площадь		0	м^2					
Bec									
Материала			0	ĸŀ					
Продукта			0	ĸŀ					
Изоляции			0	ĸŀ					
🛛 Допускаем	ые перемещения								
Осевой хо	д		0	M					
Сдвиг			0	MP					
Угол			0	рад					
Диаметр к	ожуха изоляции	(для	0	MP					
Выбор из 1	БД								
Бесканалы	ная прокладка		Нет						

Рис. N2.2. Задание жесткостей компенсатора в версии 201611

N⁰	Вариант	П	Перемещения, мм		Углы поворота, рад.		
		UX	UY	UZ	ROTX	ROTY	ROTZ
1	Прямая труба, нагрузки FY = 1000 кН, FZ = 1000 кН	0	43.32	43.32	0	-0.0599	0.0599
2	Компенсатор, нагрузки FY = 1000 кН, FZ = 1000 кН	0	43.31	43.31	0	-0.0599	0.0599
3	Прямая труба, нагрузки FX = 1000 кН, FY = 1000 кН, FZ = 1000 кН, MX = 1000 кНм, MY = 1000 кНм, MZ = 1000 кНм	0.64	103.17	-16.53	0.1553	0.0596	0.1793
4	Компенсатор, нагрузки FX = 1000 кH, FY = 1000 кH, FZ = 1000 кH, MX = 1000 кHм, MY = 1000 кHм, MZ = 1000 кHм	0.64	103.17	-16.54	0.1553	0.0596	0.1793
5	Компенсатор, жесткости на изгиб вокруг Х' 8000 кНм/рад, на изгиб вокруг Ү' 8000 кНм/рад, кручение и растяжение как у прямой трубы, жесткость на сдвиг 0, нагрузки:	0	62.74	62.74	0	-0.1252	0.1252

Таблица N2.2 Результаты (перемещения консольного конца)

	MY = -1000 кНм, MZ = 1000 кНм						
6	Компенсатор, жесткости на изгиб вокруг Х' 4000 кНм/рад, на изгиб вокруг Y' 8000 кНм/рад, кручение и растяжение как у прямой трубы, на сдвиг жесткость 0, нагрузки : MY = -1000 кНм, MZ = 1000 кНм	0	62.74	125.37	0	-0.2502	0.1252
7	Компенсатор, жесткости на изгиб вокруг Х' 8000 кНм/рад, на изгиб вокруг Ү' 4000 кНм/рад, кручение и растяжение как у прямой трубы, на сдвиг жесткость 0, нагрузки : MY = -1000 кНм, MZ = 1000 кНм	0	125.37	62.74	0	-0.1252	0.2502
8	Компенсатор, жесткости на изгиб вокруг Х' 8000 кНм/рад, на изгиб вокруг Y' 8000 кНм/рад, кручение и растяжение	0	62.74	62.74	0	-0.1252	0.1252

	как у прямой трубы, на сдвиг жесткость 0, нагрузки : МҮ = -1000 кНм, МZ = 1000 кНм. Угол поворота локальных осей 45 град.						
9	Компенсатор, жесткости на изгиб вокруг Х' 4000 кНм/рад, на изгиб вокруг Y' 8000 кНм/рад, кручение и растяжение как у прямой трубы, на сдвиг жесткость 0, нагрузки : MY = -1000 кНм, MZ = 1000 кНм. Угол поворота локальных осей 45 град.	0	94.06	94.06	0	-0.1877	0.1877
10	Компенсатор, жесткости на изгиб вокруг X' 8000 кНм/рад, на изгиб вокруг Y' 4000 кНм/рад, кручение и растяжение как у прямой трубы, на сдвиг жесткость 0, нагрузки: MY = -1000	0	94.06	94.06	0	-0.1877	0.1877

			1	1	1	1	1
	кНм, MZ = 1000 кНм. Угол поворота локальных осей 45 град.						
11	Компенсатор, жесткости на изгиб вокруг Х' 8000 кНм/рад, на изгиб вокруг Y' 8000 кНм/рад, кручение и растяжение как у прямой трубы, на сдвиг жесткость 0, нагрузки : MY = -1000 кНм, MZ = 1000 кНм. Угол поворота локальных осей 30 град.	0	62.74	62.74	0	-0.1252	0.1252
12	Компенсатор, жесткости на изгиб вокруг Х' 4000 кНм/рад, на изгиб вокруг Y' 8000 кНм/рад, кручение и растяжение как у прямой трубы, на сдвиг жесткость 0, нагрузки: MY = -1000 кНм, MZ = 1000 кНм. Угол поворота локальных	0	78.40	109.71	0	-0.2190	0.1565

	осей 30 град.						
13	Компенсатор, жесткости на изгиб вокруг Х' 8000 кНм/рад, на изгиб вокруг Y' 4000 кНм/рад, кручение и растяжение как у прямой трубы, на сдвиг жесткость 0, нагрузки : MY = -1000 кНм, MZ = 1000 кНм. Угол поворота локальных осей 30 град.	0	109.71	78.40	0	-0.1565	0.2190
14	Компенсатор, жесткости на изгиб вокруг Х' 8000 кНм/рад, на изгиб вокруг Y' 8000 кНм/рад, кручение и растяжение как у прямой трубы, на сдвиг жесткости по Х' 600000 кН/м, по Y' 600000 кН/м, нагрузки : FY = 1000 кНм, FZ = 1000 кНм	0	45.25	45.25	0	-0.0627	0.0627
15	Компенсатор, жесткости на изгиб вокруг Х' 8000 кНм/рад, на	0	45.25	48.58	0	-0.0627	0.0627

	изгиб вокруг Y' 8000 кНм/рад, кручение и растяжение как у прямой трубы, на сдвиг жесткости по X' 300000 кН/м, по Y' 600000 кН/м, нагрузки: FY = 1000 кНм, FZ = 1000						
16	кНм Компенсатор, жесткости на изгиб вокруг Х' 8000 кНм/рад, на изгиб вокруг Y' 8000 кНм/рад, кручение и растяжение как у прямой трубы, на сдвиг жесткости по Х' 600000 кН/м, по Y' 300000 кН/м, нагрузки : FY = 1000 кНм, FZ = 1000 кНМ	0	48.58	45.25	0	-0.0627	0.0627

N3. Расширение возможностей фрагментации расчётной модели

К существовавшей в предыдущих версиях операции фрагментации (выбора части схемы) по участкам и сортаментам труб (рис. N3.1(a)) в версии 201611 добавилась возможность проводить выбор элементов схемы по большому числу параметров (рис. N3.2(б)), таких как свойства материалов, нагрузки, коэффициенты, типы деталей (прямые трубы, отводы, некольцевые сечения) и др.

Рис. N3.1. Опция фрагментации расчетной модели: (а) в версии 201605; (б) в версии 201611

Рассмотрим несколько примеров фрагментации на объемных расчетных схемах. На рис. N3.2 показан выбор всех деталей с внутренним давлением 4 МПа. Можно проводить выбор одновременно по нескольким параметрам. На рис. N3.4 показан выбор труб с наружным диаметром 219 мм, толщиной стенки 28 мм. На рис. N3.5 выбраны все отводы с рабочей температурой 250 град.

В постпроцессоре результаты (в форме визуализации и сводных таблиц) выдаются только для элементов выбранного фрагмента расчетной схемы (рис. N3.6, N3.7).

Рис. N3.2. Выбор по величине внутреннего давления

Рис. N3.4. Выбор труб по диаметрам и толщинам стенок

МΠа

71.45

66.84 62.22 57.61 52.99 48.38 43.76 39.14 34.53 29.91 25.30 20.68 16.07 11.45 6.84 2.22

Actron He Bacipani	очая температура	BEDGHL.	°C 250.00	Операция с множеством (*) Новый выбор Овабульть из выбранного Удалить из выбранного Эвабульть воё) Отменить выбор) Инвертировать) Удалить из выбра выделен) Выбрать только выделени
Фланиц. Фланиц. Дополнятельные нагрожение Монтазиные нагрожение Монтазиные пагит Сосредсточение посса Диналия, степень свободы	A CONTRACTOR		נג)×4 נו++-איא איז אאן א]Σ[J=	Приментр. Caparer p. Caparer p.	250 °C
виороводенствие Динаминеское воздействие Вывод усилий в сейснике	7 	ЕРСИЯ, Пар+L	Sinter Sinter Sinter Sinter	Пололиительные режины При Давление для 1-го доп Р. Давление для 3-го доп Р. Давление для 3-го доп Т. 1 Генператра для 3-го д Т. 1 Генператра для 3-го д Т. 3 Генператра для 3-го д Т. 3 Генператра для 3-го д Х	×

Рис. N3.5. Выбор отводов с заданной рабочей температурой

Рис. N3.6. Выбранный фрагмент расчетной схемы

Parce Web (18:-19)			<u>]] P</u> 2	вд Г	ix ip in	st que du	-1 <u>Σ</u> -1 <u>Σ</u> -1										
Res Barase Usan Yourses Xourses Yourses	Зчасток №22b (138 · 139) V 🛤 3 · 5 V 🕼 + 🖉	-	∥ †† Coxpa	нить проек	г в версии												
Binnee Met Mappen Tm Cusa Harpyan Larpyan Outvot Public values 0Guas 7711 Med Mappen Tm Cusa Public values Tm Cusa Tm Tm Cusa Tm Tm Cusa Tm	есни Сечен, Детам Общие Изел Прогидина си: У 0 ней 2 1711 ней		Имя проез Объект: Па Система: I Дата созда Таблица 1. Результата	ста: D:\DOC ap+L Iap+L иния: 2016-1 . Нагрузки 4 расчёта п	UMENTS\ 2-13 19:50 на опорны о ПНАЭ Г	WORK\S 02 10 KOHCTPY 1-7-002-86	ADYO\AS	TRA\Теспи ТАЦ-20161	рование\р 1-р1)	елитз_20161	1\фрагмен	тация\моде	ли\Правая	д 15.09_1_	_арм		
B indeer Ofcase 720a Ceveres Mapperp Onegas Padover coccounte Xomopo coccounte Zonyce Ripotevanite dros, rpat B 313 (135) 229 (146) 2 cocents kill 0.000 -15.241 Image: padover coccounte Padover coccounte Amoperp 100 (140) 11 100 (140) 100 (140) 100 (140) 100 (140) 100 (140) 100 (140) 100 (140) 100 (140) 100 (140) 100 (140) 113 (150) 1	Luna Dessue 0 MM	3D	VHACTOR/	Howen		Turr	Cums					Нагрузки					
Diaga (11) mm since [mospead] accounts \$11 \$200, 193, 12 \$12,33, 193, 12,33, 11,33, 11,34, 11,34, 11,34, 11,35,	D finale	-9,	узел	сечения	Маркер	опоры	Моменты	Pado	Pu A fu	RHITE Dr A fr	Холо	пное состо	яние Работ	Dr Mr	Допуск.	D-A/-	Примечание
B nonserval Adcounts 30 30 30 313 (135) 2.71CK 0 fetters or set 16 191 0.000 -1.966 0.000 0.000 1 11356 1 11356 1 11356 1 11356 1 11356 1 11356 1 11356 1 11356 1 11356 1 11356 1 11356 1 1 11356 1 1 11356 1 1 11356 1 1 11356 1 1 11356 1 1 11356 1 1 11356 1 1 1 11356 1 1 1 11356 1			229 (140- 142)	2		скольж.	ĸН	0.000	0.000	-16.146	0.000	0.000	-15.241	FUM	ry/my	FUMZ	
Orrecort: 90 11 Intrana skf 0.000 4.335 1.135 Image: skf Image: skf 1mage: skf	В плане (поларный) Абсолютн. [90	10	343 (139- 145)	2-ЛСК		общего вида обшего	ĸН	-16.191	0.000	0.000	-1.966	0.000	0.000				
Дополн 90 1350 7.330 -3.964 -4.135 -9.742 Image: Control of the state o	Относит. 90	0		11		вида	KH vU	0.000	-8.296	-12.352	0.000	-2.991	-11.356				
Broosture (sauegranued) 99 # Uknow 0	Дополн. 90	Ni	397			мёртвая	кН*м	-4.690	1.350	-7.339	-5.984	-4.835	-1.061				
	В проении (азанаутальны) Уклан (## 															

Рис. N3.7. Сводная таблица «Нагрузки на опоры»

Заключение

В версии 201611 фрагментация представляет значительно более широкие, по сравнению с предыдущими версиями, возможности по работе с расчетной схемой, позволяя выводить результаты для частей трубопроводной системы с характерными параметрами.
N4. Реализация возможности задания различных физикомеханических и нагрузочных параметров для деталей на участке

В версии 201611 появилась возможность задавать индивидуально для отдельных деталей (трубы, отводы, тройники, некольцевые сечения) параметры, такие как давление, температура, характеристики материала и другие, которые раньше считались участковыми (постоянными по всему участку).

Для верифицирования новой возможности была рассмотрена расчётная схема ACTPA-HOBA, содержащая стыковки двух участков через узел, в связи с различием на этих участках т.н. участковых данных (давления, температуры, материала).

Сравниваются результаты для двух вариантов:

- исходная модель (*модель 1*);

- модель, построенная на основе исходной путём удаления избыточных узлов (*модель 2*). Избыточными считаются узлы, в которых стыкуются 2 участка.

В таблице N4.1 приводятся результаты расчёта по версиям 201605 и 201611. Расчёт по версии 201611 проводился в 2-х вариантах: по исходной модели (2 столбец) и по модели, построенной на основе исходной путём удаления избыточных узлов (3 столбец).

Рис. N4.1. Модель с избыточными узлами (модель 1)

Рис. N4.3. Параметры модели («участковые» данные): (*a*) рабочее давление; (*б*) рабочая температура; (*в*) материал; (*г*) давление испытаний

Таблица N4.1. Сравнение расчетных перемещений

Примечание.

Обозначения в таблице: 2ф – этап 2 при фиктивной температуре, 2п – этап 2 при полной температуре, И – режим испытаний.

Рис. N4.4. Напряжения на этапе 2, МПа. Версия 201611

Рис. N4.5. Напряжения для режима испытаний, МПа. Версия 201611

Заключение

1. Результаты расчёта по версии 201605 и 201611 для одинаковых моделей совпадают.

2. Для моделей с различным разбиением на суперэлементы (участки) отмечено расхождение в результатах (табл. N4.1, рис. N4.4, N4.5) на 0.015% (этап 2, полная температура). Это расхождение связано с изменением разбивки на суперэлементы (участки), а не погрешностями при распространении участковых данных на детали, входящие в участок.

N5. Реализация тройника как отдельной детали с возможностью задания параметров на тройник, без участия примыкающих участков

В версии 201611 для тройников заданных как отдельная деталь (редактор -> вставить деталь -> тройник) (рис. N5.1) могут быть заданы отличающиеся от примыкающих труб параметры такие, как давление, температура, характеристики материала. Примеры показаны на рисунках N5.2 – 5.4.

Рис. N5.1. Задание тройника как детали

Корректность копирования и удаления.

Тройник-деталь может быть удален с помощью опции «Редактор->удалить деталь» (рис. N5.5). При копировании фрагмента, содержащего тройники-детали, все заданные на них параметры сохраняются (рис. N5.6 – 5.8).

Рис. N5.5. Удаление тройника-детали

Материал из БД Тройник × Тип тройника Сварной 🗄 Магистраль Наружный диаметт 220 MM Толщина стенки 8 MM Длина 500 MM 🛛 Штуцер Наружный диаметт 120 MM Толщина стенки 5 MM Высота (от корпу 200 MM 🗄 Толщина "прилива На магистрали 2 MM На штуцере 1 MM 🗄 Способ задания в Масса Macca 100 КГ Выбор детали из . OK Отмена Рис. N5.6. Параметры тройника МΠа Давление 7.00 5.00 130 АСТРА-АЭС'2017 (201611) - ТЕСТОВАЯ ВЕРСИЯ.

Рис. N5.7. Копирование фрагмента с тройником-деталью

N6. Реализация положений и формул по оценке прочности новых нормативных документов ГОСТ Р 55989-2014, ГОСТ Р 55990-2014

В версии 201611 был реализован расчет по нормативным документам:

- ГОСТ Р 55989-2014 Магистральные газопроводы. Нормы проектирования на давление свыше 10 МПа. Основные требования;
- ГОСТ Р 55990-2014 Месторождения нефтяные и газонефтяные. Промысловые трубопроводы. Нормы проектирования.

Существенными особенностями этих нормативных документов является наличие в них рекомендаций по расчету на общую устойчивость участков газопроводов в грунте и местную устойчивость (устойчивость формы поперечных сечений). Ниже рассмотрены примеры данных видов расчета.

N6.1. Расчет на общую устойчивость

Рассматривается магистральный газопровод содержащий участки в грунте (рис. N6.1.1). Проводится расчет ГОСТ Р 55990-2014. Результат расчета на общую устойчивость (продольные усилия) показан на рис. N6.1.3, а также в сводной таблице N6.1.2.

Исходными данными, специфичными для расчета на общую устойчивость, являются радиус кривизны оси трубопровода, коэффициент запаса общей устойчивости, коэффициент учета высоты засыпки, также должны быть заданы параметры бесканальной прокладки трубопровода в грунте.

Результат расчета на общую устойчивость представляет собой значения расчетных продольных усилий (рис. N6.1.3a), допускаемых продольных усилий (табл. N6.1.2) и отношение расчетных усилий к допускаемым (рис. N6.1.3б), которое должно быть меньше 1 для выполнения критерия устойчивости.

Наличие грунта

Рис. N6.1.1. Расчетная схема

Рис. N6.1.2. Рабочая температура

	п	v
$120\pi M$	LIANAMETRLI	ацапизируемой петаци
1 аблица 1 (0.1.1.	11apamerph	
1	1 1	1.2

Наружный диаметр D, м	1.22
Толщина стенки трубы t, м	28e-3
Суммарный погонный вес трубы w, МН/м	11.484e-3
Глубина засыпки Н, м	2.1
Радиус кривизны оси трубопровода ро, м	500
Коэффициент запаса общей устойчивости	1.3
k _{u.b.}	
Плотность грунта, т/м ³	1.52
Удельный вес грунта засыпки ү, МН/м ³	9.81·1.52e-3
Коэффициент учета высоты засыпки для	0.1
песчаных грунтов k _{H.s.}	

Рассмотрим сечение 69 на участке №24 (20-830). Параметры рассматриваемой детали приведены в таблице N6.1.1.

По формуле (12.38) ГОСТ Р 55990-2014 допускаемая продольная сила при расчете на общую устойчивость определяется как

$$[P] = \frac{1}{k_{u.b.}} N_{cr} = \frac{1}{1.3} 10.463 = 8.04846 \text{ MH} = 8048.5 \text{ \kappaH},$$

где критическое продольное усилие

 $N_{cr} = 0.372 \cdot q^* \cdot \rho_0 = 0.372 \cdot 0.0562 \cdot 500 = 10.463 \text{ MH/m.}$

Предельное погонное сопротивление перемещениям трубопровода вверх

 $q^* = w + q_s^* = 11.484 \cdot 10^{-3} + 44.770 \cdot 10^{-3} = 56.254 \cdot 10^{-3} \text{ MH/m.}$

w — погонный вес трубопровода, q_s^* - предельная несущая способность грунта при выпучивании трубопровода, для песчаного грунта

$$q_s^* = \gamma \cdot H \cdot D \cdot \left(1 + k_{H.s.} \frac{H}{D}\right) = 14.91 \cdot 10^{-3} \cdot 2.1 \cdot 1.22 \cdot \left(1 + 0.1 \frac{2.1}{1.22}\right) = 44.770 \text{ MH/m}.$$

Вычисленное по формулам ГОСТ значение допускаемой продольной силы 8048.5 кН для рассматриваемой детали практически совпадает с используемым в программе значением 8049.8 кН (см. табл. N6.1.2).

б) Относительные значения (отношение расчетных усилий к допускаемым) ПОСТ-СТАЦ. Относительные значения. Этап 2. Общая устойчивость.

астра-магистр'2017 (201611) - тестовая версия. Рис. N6.1.3. Результаты расчета на общую устойчивость

				Напряжения, МПа									
Участок	Сечение/ элемент	D x S, мм	Маркер	Этап 2. Кольцевые напряжения		Этап 2. Кольцевые Этап 2. Продольные напряжения		Этап 2. Эквивалентные напряжения		Этап 2. Общая устойчивость, кН		Этап 2. Местная устойчивость, безразм.	
				Расч.	Допуск.	Расч.	Допуск.	Расч.	Допуск.	Расч.	Допуск.	Расч.	Допуск.
17 (31-32)	1	1420 x 32		221.9	217.8	0.0	288.0	192.6	432.0	0.0		0.000	
24 (20-830)	69	1220 x 28		217.9	217.8	230.8	288.0	388.6	432.0	-8485.8	-8049.8	0.349	0.826
1 (1-831)	0	1220 x 28	вход газа	108.9	217.8	33.3	288.0	128.9	432.0	-2151.7	-117474.8	0.349	0.874
2 (30-31)	1	1420 x 32		221.9	217.8	0.0	288.0	192.4	432.0	0.0		0.000	1.000
24 (20-830)	50	1220 x 28		217.9	217.8	182.1	288.0	346.8	432.0	-3353.2	-8049.8	0.349	0.853
1 (1-831)	173	1220 x 28		108.9	217.8	0.0	288.0	99.0	432.0	-112.7	-117474.8	0.000	
24 (20-830)	38	1220 x 28		217.9	217.8	216.3	288.0	376.0	432.0	-1306.8	-8049.8	0.000	

Таблица N6.1.2. Максимальные напряжения в прямых трубах

Примечание: жирным шрифтом выделены максимальные значения по соответствующей группе

Расчётное напряжение превышает допускаемое

N6.2. Расчет на местную устойчивость

Исходными данными, специфичными для расчета на местную устойчивость (устойчивость формы сечений), являются предельно допускаемая изгибная деформация, начальная овальность сечений труб.

Результат расчета на местную устойчивость представляет собой отношение предельно допустимой изгибной деформации к критической продольной деформации только при изгибе трубопровода $\varepsilon_b/\varepsilon_{1cr}$ (рис. N6.2.1a), параметр овальности сечений труб θ^* (табл. N6.2.2), коэффициенты использования ($\varepsilon_b/\varepsilon_{1cr}$)/ θ^* (рис. N6.2.1б).

Рассматривается расчетная схема из п. N6.1. Для расчета местной устойчивости для детали 38-101 на участке №24(20-830) заданы следующие параметры:

- предельно допускаемая изгибная деформация ε_b = 4e-3;
- начальная овальность сечений труб $\theta_0 = 2\%$.

Параметры рассматриваемой детали приведены в табл. N6.2.1. Результаты расчета на местную устойчивость показаны на рис. N6.2.1 и в табл. N6.2.2 (колонка «Этап 2. Местная устойчивость, безразм»).

1.22
28e-3
480
2.06e5
0.3
4e-3
2

Таблица N6.2.1. Параметры анализируемой детали

Согласно формуле (Д.1) ГОСТ Р 55990-2014 критерием обеспечения местной устойчивости является выполнение условия:

$$\frac{\varepsilon_b}{\varepsilon_{1cr}} \le \theta^*.$$

Критическая продольная деформация только при изгибе

$$\varepsilon_{1cr} = \frac{t}{2D} = \frac{0.028}{2 \cdot 1.22} = 0.011475.$$

Отношение

$$\frac{\varepsilon_b}{\varepsilon_{1cr}} = \frac{0.004}{0.011475} = 0.3485.$$

Параметр овальности сечений труб

$$\theta^* = \sqrt{\frac{1 + (\sigma_{cr}^*)^2}{1 + (\sigma_{cr}^*/f)^2}} = \sqrt{\frac{1 + (0.37142)^2}{1 + (0.37142/0.45499)^2}} = 0.82637.$$

$$f = \sqrt{1 + \left(\frac{(\theta_0/100)D}{t}\right)^2} - \frac{(\theta_0/100)D}{t} = \sqrt{1 + \left(\frac{(2/100)1.22}{0.028}\right)^2} - \frac{(2/100)1.22}{0.028}$$

$$= 0.45499.$$

Параметр критического напряжения

$$\sigma_{cr}^* = \frac{\sigma_{cr}}{\psi_N \sigma_v} = \frac{119.2401}{0.66883 \cdot 480} = 0.37142.$$

Критическое напряжение в цилиндрической оболочке при действии наружного давления (напряжение коллапса)

$$\sigma_{cr} = \frac{E_0}{1 - \mu_0^2} \left(\frac{t}{D}\right)^2 = \frac{206000}{1 - 0.3^2} \left(\frac{0.028}{1.22}\right)^2 = 119.2401 \text{ MIIa.}$$

Понижающий коэффициент, учитывающий влияние продольной силы

$$\psi_N = \sqrt{1 - \frac{3}{4} \left(\frac{\sigma_N}{\sigma_y}\right)^2 - \frac{1}{2} \frac{\sigma_N}{\sigma_y}} = \sqrt{1 - \frac{3}{4} \left(\frac{230.76}{480}\right)^2 - \frac{1}{2} \frac{230.76}{480}} = 0.668833,$$

где σ_N – осевое сжимающее продольное напряжение, по расчету (рис. N6.2.2) в сечении 69 на участке №24(20-830) σ_N = 230.76 МПа.

Вычисленные по формулам ГОСТ значения $\varepsilon_b / \varepsilon_{1cr} = 0.3485$ и $\theta^* = 0.82637$ для сечения 69 (участок №24) практически совпадают (незначительное отличие можно объяснить ошибками округления) с полученными в АСТРА-НОВА результатами:

- отношение $\varepsilon_b / \varepsilon_{1cr}$ выводится как расчетное напряжение на этапе 2 (местная устойчивость) (рис. N6.2.1, табл. N6.2.2);
- параметр овальности θ* выдается в таблице напряжений как допускаемое значение на этапе 2 (местная устойчивость).

Рис. N6.2.1. Результаты расчета на местную устойчивость

					Напря	жения, МПа		
	Сечение/	D x S.						
Участок	элемент	ММ	Этап 2. Продольные напряжения		Этап 2. Общая устойчивость, кН		Этап 2. Местная устойчивость, безразм.	
			Расч.	Допуск.	Расч.	Допуск.	Расч.	Допуск.
2 (30-31)	1	1420 x	0.0	288.0	0.0		0.000	
24 (20-830)	69	1220 x	230.8	288.0	-8485.8	-8049.8	0.349	0.826
24 (20-830)	38	1220 x	216.3	288.0	-1306.8	-8049.8	0.349	0.874
1 (1-831)	0	1220 x	33.3	288.0	-2151.7	-117474.8	0.000	1.000
24 (20-830)	50	1220 x	182.1	288.0	-3353.2	-8049.8	0.349	0.853
1 (1-831)	173	1220 x	0.0	288.0	-112.7	-117474.8	0.000	

Таблица N6.2.2. Максимальные напряжения в прямых трубах

Примечание: жирным шрифтом выделены максимальные значения по соответствующей группе

Расчётное напряжение превышает допускаемое

АСТРА-МАГИСТР'2017 (201611) - ТЕСТОВАЯ ВЕРСИЯ.

Рис. N6.2.2. Продольные напряжения на этапе 2, МПа

N7. Добавление новой таблицы исходных данных

В версии 201611 была введен новый формат для таблицы исходных данных. Современная таблица «Исходные данные» содержит:

- сведения о программе АСТРА-НОВА'2017 (рис. N7.1);

- общие данные расчетной схемы включая количественные данные по числу основных деталей (трубы, отводы, тройники и др.) (рис. N7.2);

- параметры деталей по участкам, включая типоразмеры, нагрузки, коэффициенты, характеристики материала (рис. N7.3). Параметры, сохраняющие свои значения на последующих деталях в схеме, не выводятся;

- данные по узловым деталям и опорам (рис. N7.4, N7.5);

- сведения по динамическим степеням свободы в расчетной схеме с указанием направления, по которым они заданы (рис. N7.6);

- координаты всех сечений по участкам расчетной схемы относительно начального узла участка (рис. N7.7).

🏥 АСТРА-АЭС - [Просмотр HTML-файлов]		– o ×
💬 Файл Редактор Вид Окно ?		- 8
D 📽 🗊 🗖 🛼 📾 🛛 🕂 🗕 🖉 🤆 🛎 🎞	$\xrightarrow{\sim}$ \rightarrow} $\xrightarrow{\sim}$ \rightarrow} $\xrightarrow{\sim}$ $\xrightarrow{\sim}$ \rightarrow} $\xrightarrow{\sim}$ $\xrightarrow{\sim}$ \rightarrow} $\xrightarrow{\sim}$ \rightarrow} $\xrightarrow{\sim}$ \rightarrow} $\xrightarrow{\sim}$ \rightarrow} $\xrightarrow{\sim}$ $\xrightarrow{\sim}$ \rightarrow} $\xrightarrow{\sim}$ \rightarrow} $\xrightarrow{\sim}$ \rightarrow} $\xrightarrow{\sim}$ \rightarrow} $\xrightarrow{\sim}$ $\xrightarrow{\sim}$ \rightarrow} \rightarrow $\xrightarrow{\sim}$ \rightarrow} $\xrightarrow{\sim}$ \rightarrow} $\xrightarrow{\sim}$ \rightarrow} $\xrightarrow{\sim}$ \rightarrow} $\xrightarrow{\sim}$ \rightarrow} $\xrightarrow{\sim}$ \rightarrow} \rightarrow \rightarrow} \rightarrow $\xrightarrow{\sim}$ \rightarrow} \rightarrow \rightarrow} \rightarrow \rightarrow	
Участок не выбран 🗸 🚧	V 🕼 + 🔊 😑 🗃 🕂 Сохранить проект в версин	
Гесни. Сечен. Деталь Общие Узел Проекция на оси <td< td=""><td>Комплекс программ А С Т Р А - АЭС '2017 (рент: 201611-p1) Автомализираемия и) речит пубороворана системи на сейсанические воздействия, на изборововасть и инустовощиние даримонические процессы и и сейсанические воздействия, на изборововасть и инустовощиние даримонические процессы и в соответствии с требованиями Норм ПНАЭ Г-7-002-86 Сорунфи (С) 1991-2017 НИЦ СтаДио Раз работ ка Научно-иссларовательский интер СтаДио (НИЦ СлаДио) Дии корреспониции 112-00 (НИЦ СлаДио) Дии корреспониции: 123-00 (НИЦ СлаДио) Дии корреспониции: 123-00 (НИЦ СлаДио) Дии корреспониции: 123-00 (НИЦ СлаДио)</td><td></td></td<>	Комплекс программ А С Т Р А - АЭС '2017 (рент: 201611-p1) Автомализираемия и) речит пубороворана системи на сейсанические воздействия, на изборововасть и инустовощиние даримонические процессы и и сейсанические воздействия, на изборововасть и инустовощиние даримонические процессы и в соответствии с требованиями Норм ПНАЭ Г-7-002-86 Сорунфи (С) 1991-2017 НИЦ СтаДио Раз работ ка Научно-иссларовательский интер СтаДио (НИЦ СлаДио) Дии корреспониции 112-00 (НИЦ СлаДио) Дии корреспониции: 123-00 (НИЦ СлаДио) Дии корреспониции: 123-00 (НИЦ СлаДио) Дии корреспониции: 123-00 (НИЦ СлаДио)	
Относит: 0 Дополн. 0 В проение (азнербланная)	Сонтарон фак (247) (Мо-3010, E-mail: stadyo@stadyo.ru Contarting (иникральный приектор дл.к. Былостовалий А.М.) N Атте стания / се р ти фика циля Колязияс АСТРА-АОС аттестован Паспорт Госатовадарова РФ №40 от 211.287, pp. №6 от 050, 06.95 Паспорт Госатовадарова РФ №40 от 211.287, pp. №6 от 050, 06.95 Паспорт Госатовадарова РФ №40 от 211.287, pp. №6 от 050, 06.95	
	Kommesca ACTPA - T5C, HE OF TEXIDA, TEXIDOCETS, MATRICTP ceptrofunguosanse FOCC RU001.111C115 000 [CTC1C: ceptrofunza NPOCC RUC1TIS.1100415 or 01.07.2009 ceptrofunza NPOCC RUC1TIS.1100415 or 01.07.2011 ceptrofunza NPOCC RUC1TIS.1100415 or 01.07.2013 ceptrofunza NPOCC RUC1TIS.1100486 or 13.07.2013 lister mooresta: D: DOCUMENTS WORK/STADYO ASTRA.Tecmponause/penm_201611 yrowseemail pacwer geranefit a ACTPA-CTAQUO Ofesear: CA3C3 flora Corresta: CLiff: CAOP, onversas tp-gas Jara company. 2016-12-13 [18.41:22] Tafomu J. Hocompany.meanse	Mogent TEST3_penns

📕 АСТРА-АЭС - [Просмотр HTML-¢	файлов]				- o ×
Файл Редактор Вид Окно	?				- 8
	+- // C & H.	n ca	B _P B ^{AT} P	$T_X \hspace{0.2cm} T_p \hspace{0.2cm} \left \hspace{0.2cm} q_{_{R}} \hspace{0.2cm} q_{_{Pp}} \hspace{0.2cm} q_{_{ND}} \hspace{0.2cm} q_{_{Z}} \hspace{0.2cm} q_{_{Z}} \hspace{0.2cm} \right \hspace{0.2cm} {}_{D \times S} \hspace{0.2cm} \right $	
Участок не выбран	~ #4	 I = + 2^o III 	🝈 🕀 Сохранить проект	г в версин	
18	E2/62/2011	x Cucrem	a. CIMP, CAOP, UNYCHIER	е тр-ды	
Feast Course Barrage Ofen	un Hann	Дата со	здания: 2016-12-13 18:41:	42	0
Сечен детали оощ	NG 9361				
Проекции на оси		Таблиц	а 1. Исходные данные		-
X U MM		Ода Нормы	IIHA31-7-002-86 (ACI)	PA-A3C-201011-p1)	00
Y 0 MM		🔍 Количе	ственные данные для ф	рагмента/схемы	0-
		(Номер	последнего внутреннего	улла схемы: 116	0-
2 U MM		True 1	ов (суперэлементов) в схе	ene: 1/9	
Данна		3D Omono	(rufor): 325		
R game 0 MM		Тройна	ков и врезок: 60		>
D Toldho -		Apman	р (число отрезков): 45		fi
Общая 0 мм		Неколь	цевых сечений: 68		
		P* Onop: 9	7		
Угол, град		Пружая	ных подвесок: 72		-9
В плане (полярный)		10			
Абсолютн. 0		П Общие	данные расчётной схемь	4	
			бопровола: Нитколемпе	а жесткостями и разочным нагрузками пружин	10
Относит. 0		Koath	пиент перегозлят 14	ally press	200
Bonomu 0		Ма Количе	ство "дополнительных" р	explos: 0	3
Zonose.		Man Yuer no	вышенной оболочечной	подаливости св. тройников штуцеров оборуд. Нет	~
0		"Nº Yuer 60	ковых реакций в подвеся	сах в холодном состоянии: Нет	/
(азимитальный)		# Автома	пическая вставка сечений	й для моделирования грунта: Да	
		Учет ос	евых сил от давления в ла	инзовых/сильфонных компенсаторах: Нет	
9клон 0		S Yuer od	евых сил от давления в др	ytrix snewertax. Her	
		U Stero	евои деформации от дан	nehus (sopers June), ner	
		E Koz-so	приближений при выбор	a b obodas e subultificilitoriale inter	
		Vyër ng	пытаний и поп. режимов	Her	g.
		Подбор	пружин с учётом испыт	аний (расчёт 10): Нет	
		Vuër na	грузок на пружины при	отрыве от опор на этапе 1 (расчёты 1, 10): Нет	
		Next	Nº детали/	Ucromula namela	
		Juy	сечения		
		1	1-3) 1 (деталь)	Труба (0-2)	0
				Наружный диаметр. мы. 2828	102
				I onlight a creeksi, MM: 114	-
				Another a yronenie, and a Donomine these poetroster and an a construction of the second secon	~
				Brytnehmen angesterine MTIA: 69	

Рис. N7.2. Общие данные расчетной схемы

АСТРА-АЭС - [Просмотр HTML-файлов]			- 0
🗇 Файл Редактор Вид Окно ?			-
	11-++++ 米 十米 冬 ち い	$ [\beta_{II}] [\Xi^T] P [T_X] T_p] [q_{_{III}}] q_{_{III}}] q_{_{III}}] q_{_{III}}] q_{_{III}}] q_{_{III}}] q_{_{IIII}}] q_{_{IIIII}}] [Dec $	
Участок не выбран 🗸 🙌	- 日本部 二番 中	Сохранить проект в версии	
Геом. Сечен. Детали Общие Узел Проекции на оси	хі Таблица 2. Исхо Нормы ПНАЭ Г	иные данные. Уживые детали и опорыя 7-002-86 (ACTPA-A-3C-20[611-p1]	,
X 0 MM	Ne yana	Исходные данные	
У 0 мен Z 0 мен	© 3 ∞ 30	Тройных шталигованный Наружный диалетр магистрали, кож 2828 Гоширия стенки магистрали, кож 114 Наружный диалетр штигова, амс 640	
В плане 0 мян Общая 0 мян	4 2	Толицина стенки штуцера, кос. 85 Тройник штамполанный Наружный рамлетр мангистрани, кос. 2328 Голицина стенки магистрали, кос. 114	
В плане (поларный) Абсолютн. 0 Относит. 0	10 87 89	наружный диаметр штуцера, мыс 640 Голицина стояни штуцера, мыс 65 Гройник штампованный Наружный диаметр манистрани, мыс 2828 Голицина стояны манистрани, мыс 114	
Дополн. 0	Ni Ngo 10	Наружный диаметр штуцера, мыс 640 Тощирия стенки штуцера, мыс 85 Тройнык штампоканеный Наружный диаметр магистраци, мыс 2828	
(азинчутальный) 0 Уклон 0		Топцияна стеняна малитекралия, мож. 114 Нарузнаян Памленер штундер, мож. 630 Топцияна стеняна штундера, мож. 63 Тоебиция шталипованный	
		Наружный ризметр магистрали, мм: 2828 Голирина стенки магистрали, мм: 114 Наружный ризметр штуцера, мм: 640 Голицина стекки штуцера, мм: 65	
	14	Тройнок штамполановий Наружный диаметр матистрана, мос. 2328 Голицина стекон матистрана, мос. 114 Наружный диаметр штунера, мос. 640 Голицина стекон штунера, мос. 65	
	17	Тройник штампованный Нарууланый диаметр магистрали, мы: 2828 Голщина стевая магистрали, мы: 114	

Рис. N7.4. Данные по узловым деталям и опорам. Тройники

Файл Редакт	ор Вид С	Окно ?						-
📽 🖉 🗖 🗖	s 🙀 📾	+ -	- 86ªL+	?•••• × ≠ >	5	CH	$\begin{array}{c c} \beta_{B} & \mbox{Eff} & P & T_{X} & T_{p} & q_{_{M}} & q_{np} & q_{_{N}} & q_{_{\Sigma}} & q_{_{\Sigma}}^{_{K}} & q_{_{Z}} & \mbox{Dxs} \end{array}$	
часток не выбра	н	~	<i>4</i> 4		\$ # B	(· · · · · · · · · · · · · · · · · · ·	Сохранить проект в версии	
					×	202	мертвая опора	
сечен.	Детали	Общие	Узел			203	Мёртвая опора	-
роекции на оси					20		Собственные линейные перемещения по оси Z, мм: 3.4	
×	0	MM			Q±_	204	Мёртвая опора	
Y	0	MM			Q		Собственные линейные перемещения по оси Z, мм: 3.4	
_	0				0	205	Мёртвая опора	
Z	U	мм			(P)	200	Собственные линейные перемещения по оси Z, мм: 3.4	-
лина					3D	200	мертвая опора	
В позне	0	MM				207	Мёртвая опора	•
					-82		Собственные линейные перемещения по оси Z, мм: 3.4	
Общая	U	мм				208	Мёртвая опора	1
					1	209	Мёртвая опора	1
плане (полярн	ый)				1.0	210	Мёртвая опора	1
Afcorerte	0						Собственные линейные перемещения по оси Z, мм: 3.4	
					Ø	211	Мёртвая опора	1
Относит.	0				\odot		Собственные линейные перемещения по оси Z, мм: 3.4	
					32	212	Мёртвая опора	
Дополн.	U				192	212	Сооственные линенные перемещения по оси Z, мм: 3.4	-
0					-7940	215	мертвая опора Собственные писайные параменнания по оси Z мыс 3.4	
зимитальный)	0	+			#	214	Мёртвая опора	-
	0						Собственные линейные перемещения по оси Z, мм: 3.4	
Эклон	U				12	215	Мёртвая опора	1
							Собственные линейные перемещения по оси Z, мм: 3.4	
						216	Мёртвая опора	
						217	Мёртвая опора	
						218	Мёртвая опора	
							Собственные линейные перемещения по оси Z, мм: 3.4	-
						219	Мёртвая опора	
						220	Сооственные линеиные перемещения по оси 2, мм: 3.4	-
						220	Собственные линейные перемещения по оси Z. мм: 3.4	
						221	Мёртвая опора	1
							Собственные линейные перемещения по оси Z, мм: 3.4	
						222	Мёртвая опора	1

🗅 🚅 🕼 🗖 🗖 🗖 🗖 👘 🕂 + -	- / / - -	10 CH	P T _X T _p	$q_{xx} q_{np} q_{vo} q_{\Sigma} q_{\Sigma}^{r} q_{Z}$ Dxs	
Участок не выбран 🗸	A V 4	- 🗟 😑 🖶 🕂 Cox	ранить проект в веро	384	
Геом. Сечен. Детали Общие	Узел 🛛	№ участка	№ сечения	Исходные данные	,
Проекции на оси Х О ММ	20 0	1 (1-3)	1	Динамич. степени свободы Линейная вдоль оси Х Линейная вдоль оси Z	
У 0 ММ Z 0 ММ	C C C C C C C C C C C C C C C C C C C	2 (65-69)	1	Динамич. степени свободы Линейная вдоль оси Х Линейная вдоль оси Z	
Длина В плане 0 мм	31	3 (2-4)	1	Динамич. степени свободы Линейная вдоль оси Х Линейная вдоль оси Z	
Общая 0 ММ	2	4 (66-70)	1	Динамич. степени свободы Линейная вдоль оси Х Линейная вдоль оси Z	
В плане (полярный)	1	55 (9-11)	1	Динамич, степени свободы Линейная вдоль оси Y	
		56 (13-15)	1	Динамич. степени свободы Линейная вдоль оси Y	
Дополн. 0	N	57 (17-19)	1	Динамич. степени свободы Линейная вдоль оси Y	
В профиле	N	58 (23-25)	1	Динамич. степени свободы Линейная вдоль оси Y	
(азимутальный)	+	59 (27-29)	1	Динамич. степени свободы Линейная вдоль оси Y	
AKNOH 0	1	60 (31-33)	1	Динамич. степени свободы Линейная вдоль оси Y	
	E	61 (37-39)	1	Динамич. степени свободы Линейная вдоль оси Y	
		62 (41-43)	1	Динамич. степени свободы Линейная вдоль оси У	
		63 (45-47)	1	Динамич. степени свободы Линейная взоль оси У	
		64 (51-53)	1	Динамич. степени свободы Линейная вполь оси У	
		65 (55-57)	1	Динамич. степени свободы Линейная взоль оси У	
		66 (59-61)	1	Динамич. степени свободы	·

Рис. N7.6. Динамические степени свободы

C 0480 PeakerOp Bits C 0480 P 1x Tp Que q	
Image: Sector resultant Image: Sector resultant <th>- 0</th>	- 0
Public Concerning 0 Parameter Conconcerning 0 Parameter Concerning 0<	
Госк Диталь Общие Часп Проекция на осн — … <t< th=""><th></th></t<>	
Topogua index And the set of the set	^
No. organization No. cerveena Kocypustants (T CK, orm-no. instantanta), No. exerveena Regrup (c. Korm-no. instanta), No. exerveena Regrup	
V 0 set No ceterant	
Z 0 64 Z 0 64 Dates 0 64 B name 0 0 0 0 Address 0 0 0 0 0 Address 0 0 0 0 0 C no 0 0 0 0 0 Address 0 0 0 0 0 Address 0 0 0 0 0 Address 0 0 0 0 Address 0 0	
Z 0 M4 Dates 0 0 0 B name 0 met Oduas 0 met B name 0 met Utrast 0 0 0.00 0.00 Good 0.00 0.00 0.00 B name 0 met Utrast 0 0.00 0.00 B name 0 met Utrast 0 0.00 0.00 B name 0 met Utrast 0 0.00 0.00 B name 0 0 Adconom 0 Domosr. 0 0 B name 0 0 B name 0 0 0.00 0.00 B name 0 0 0.00 0.00 B name 0 0 0.00 0.00 Domosr. 0 0 0.00 0.00 B name 0 0 0.00 0.00 Domosr. 0	
Biname 0 Met DGuasa 0 Met Janame 0 Met DGuasa 0 Met Janame 0 0	
B noise 0 1 0.00 0.00 0.00 dros.rpat B noise (noippead) Accountr. 0 Jonar, 0 0 B noise (noippead) Accountr. 0 Jonar, 0 0 B noise (noippead) B noise (noippead) Accountr. 0 Jonar, 0 0 B noise (noippead) B noise (noippead) Accountr. 0 Jonar, 0 0 B noise (noippead) B noise (noippead) B noise (noippead) B noise (noippead) Accountr. 0 <t< td=""><td></td></t<>	
Odiase 0 i+et 3fror, rpac 7 8 name (nonpesal) 2 (65-69) 0 0.00 0.00 0.00 Adconorn 0 2 0.00 -1750.00 0.00 0.00 Orneorn 0 3(2-4) 0 0.00 -1000.00 0.00 Jonnere 0 1 0.00 -1000.00 0.00 1000.00 Broposteric 0 1 0.00 -1000.00 0.00 1000.00 Broposteric 0 1 0.00 -1750.00 0.00 0.00 Jonnere 0 1 0.00 -1000.00 0.00 1000.00 Strategistratesil 0 0.00 -1000.00 0.00 0.00 1000.00 2 0.00 -1750.00 0.00 0.00 1000.00 0.00 2 0.00 -1000.00 0.00 0.00 0.00 1000.00 0.00 0.00 0.00 0.00 0.00 0.00 <td></td>	
Constant	
Inclumentary Image: Inclumentary	
B november 0 0 0.00 <t< td=""><td></td></t<>	
Adconent. 0 1 0.00 1.000.00 0.00 1.000.00 Orneour. 0 2 0.00 -1750.00 0.00 0.00 Jonovar. 0 1 0.00 -1000.00 0.00 0.00 Bropower 0 1 0.00 -1000.00 0.00 0.00 Strateware 0 1 0.00 -1000.00 0.00 0.00 Bropower 0 1 0.00 -1000.00 0.00 0.00 Ucrear 0 1 0.00 -1000.00 0.00 0.00	
Othecorr. 0 2 0.00 -1.750.00 0.00 0.00 Jonover. 0 No 4 (66-70) 0 0.00 0.00 0.00 B moover. 0 No -1000.00 0.00 0.00 0.00 B moover. 0 -1000.00 0.00 0.00 0.00 0.00	
Broose 0 0 0.00 0.00 0.00 Broose 0 1 0.00 1000.00 0.00 1000.00 Broose 0 2 0.00 -1000.00 0.00 0.00 Store 0 0.00 0.00 0.00 0.00 0.00 Broose 0 0 0.00 0.00 0.00 0.00 Broose 0 0 0.00 0.00 0.00 0.00 Broose 0 0 0.00 0.00 0.00 0.00	
Дополея 0 1 0.00 -1000.00 0.00 1000.00 B прочиме (assergramma) # 5(3-7) 0 0.00 0.00 0.00 1 0.00 -1000.00 0.00 0.00 0.00 1 0.00 -1000.00 0.00 1000.00	
B rposwer (assey frances) = 5 (3-7) 0 0.00 0.00 0.00 1 0.00 1.000 0.00 0.00	
B (D) (2014) Image: Constraint of the constr	
1 0.00 -1000.00 1000.00	
2 0.00 -1500.00 0.00 0.00	
6 (7-9) 0 0.00 0.00 0.00	
1 0.00 1000.00 1000.00	
2 0.00 1500.00 0.00 0.00	
7 (9-13) 0 0.00 0.00 0.00 0.00	
8 (13 17 0 000 000 000 000	
*(12-17) 0 0.00 0.00 0.00 0.00	
	~

Рис. N7.7. Координаты осевой линии TC

N8. Корректировка функции импорта модели из ПК СТАРТ

В версии 201611 была актуализирована функция импорта моделей ПК СТАРТ из файла открытого формата (*.ini) для текущей версии формата данного файла. Ниже на рисунках показаны сравнения параметров для некоторых элементов в исходной (СТАРТ) и импортированной (АСТРА-НОВА) модели.

Рис. N8.1. Рабочие температуры в импортированной модели. ACTPA-HOBA

Рис. N8.2. Рабочие температуры в исходной модели СТАРТ.

Рис. N8.3. Рабочие давления в импортированной модели. ACTPA-HOBA

Рис. N8.4. Рабочие давления в исходной модели СТАРТ

ACTPA-HOBA

📕 ACTPA-MAГИCTP - [D:\Documents\Wo	ork\Stadyo\Astra\Tecтиpoвaни	ие\релиз_201611\И	терфейс со стартом\модели\КС]	– 🗆 ×
💻 Файл Данные Редактор Расче	т Результаты Вид Окно	?		_ # 1
D 🚅 🖉 🗖 🗖 🖡 📰 🛛 💠 =	• Ø F = 4 × -	=₩ 🖋 ๒ ෬	$\mathbf{p}_{\mathbf{p}} \models \mathbf{p} \mathbf{T}_{\mathbf{X}} \mathbf{T}_{\mathbf{p}} = \mathbf{q}_{\mathbf{x}} \mathbf{q}_{\mathbf{pp}} \mathbf{q}_{\mathbf{bo}} \mathbf{q}_{\mathbf{y}} \mathbf{q}_{\mathbf{y}} \mathbf{q}_{\mathbf{z}}$ Dxs	
Участок №148 (81 - 89) У	dh 0-1	V 12 + 20 :	Ф Сохранить порект в версии	
Геом. Сечен. Детали Общие	Узел		исходный трубопровод	
Узлы				
<u> 8</u> 년 🔋 🗙				
1	Гройник			
Тип тройника	Штампованый и	штампосв		10
Магистраль				
Наружный диаметр	1220	MM	SUP C	
Толщина стенки	64	101		4
Длина	1850	HM		
🛛 Штуцер				
Наружный диаметр	1020	101	10	
Толщина стенки	27.3	MM		
Высота (от корпуса)	0	301	ă 🔰 🖾 🖾	
🖂 Горловина				
Радиус	100	301	N	
🖯 Способ задания веса	Плотность			2
Плотность	7.85	т/м^3	#	1 i
Выбор детали из БД				
L			7	
			▲	
				14 F
			× ×	
			АСТРА-МАГИСТР'2017 (201611).	
			, , , , , , , , , , , , , , , , , , , ,	

CTAPT

Рис. N8.5. Тройник в узле 81

Рис. N8.6. Тройник в узле 112

Рис. N8.7. Параметры трубы 24-25 на участке №120 (65-203)

Рис. N8.8. Параметры односторонней опоры в сечении 40 на участке №151 (83-114)